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(1965), based on a lattice-dynamical analysis of their 
measured phonon dispersion relations. On the whole, 
there is reasonably good agreement between obser- 
vation and theory. The theory neglects anharmonic 
contributions to the Debye-Waller factors, and this 
could account for the observed displacements for U 
exceeding the calculated displacements, especially at 
high temperatures. 

Conclusions 

The data of Willis (1963) have been re-analysed with a 
structure-factor equation including third cumulants. 
The only non-vanishing third cumulant for UO 2 is c~23 
for the O atom. Introducing c°23 into the analysis 
accounts for anisotropic anharmonic thermal motion of 

the O atom. c°123, B u and B o have been derived over the 
temperature range 293 to 1373 K. The e.s.d.'s of c°~23 
are too large to allow a rigorous check of the 
theoretical dependence on temperature, but B U and B o 
are in reasonable agreement with those predicted by the 
theory of lattice dynamics. 
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Abstract 

Analytic expressions for the integrated intensities of 
reflexions from faulted close-packed structures have 
been obtained. These involve a single root of the 
characteristic equation (the root which corresponds to 
the reflexion under consideration), its coefficients and 
the initial conditions. The particular utility of the 
solution for cases where one or more roots of the 
characteristic equation have unit modulus is 
demonstrated. 

Introduction 

Diffraction from close-packed crystals with stacking 
faults has been investigated by a large number of 
workers and has been reviewed by Warren (1959, 
1969), Wilson (1962), Cohen & Hilliard (1966) and 
Anantharaman, Rama Rao & Lele (1972) among 
others. In their pioneering papers, Wilson (1942) and 
Hendricks & Teller (1942) developed distinct 
approaches to a solution of this problem. The present 
paper describes a simplification in the procedure for the 
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evaluation of integrated intensities following the dif- 
ference-equation method of Wilson (1942). This 
method also enables an analytical solution for the 
diffuse diffracted intensity when the characteristic 
equation found from the difference equation has roots 
with unit modulus. 

Formulation of the problem 

In general, the diffracted intensity from a possibly 
faulted crystal is given by (Warren, 1959) 

l (h3)  = Iff 2 Z (exp [iq~ra] ) exp (2 nimh3/n), (1) 
171 

where ha, h2, h 3 are continuous variables in reciprocal 
space, ~2 is a function of h~ h 2 which vanishes except 
when h I = H, h 2 = K, H and K being hexagonal indices 
with integer values, and q~,,, the phase difference across 
a pair of layers m layers apart, is given by 

~m=(Zn/3) (H-K)q , , , ,  (2) 

qm being the displacement of the m layer from the origin 
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layer in units of the stacking offset vector (1/3) (1100) ,  
and n is the number of layers in the hexagonal unit cell. 
Thus, reflexions with H - -  K = 0 (mod 3) are unaffected 
by faulting. 

The evaluation of the diffracted intensity, therefore, 
reduces to the determination of 

Jm= (exp [iq}m] ) (3) 

for reflexions with H - K 4= 0 (rood 3) and is based on 
the statistical specification of the distribution of 
stacking faults. Denoting the probability of obtaining 
the phase difference q~m across m layers by P(q)m), w e  

can write 

Jm = ~ P(qbm)ex p [iq~m], (4) 

where the summation extends over all possible values of 
g~m" The probability e(q)m) is itself a function of the 
stacking-fault probability a. Once the structure and 
the fault are specified, the probabilities of transition 
from the (m - 1) layer to the m layer can be expressed 
in the form of trees from which difference equations for 
P(~m) and consequently Jm c a n  be found (Lele, 1974). 
The latter can be expressed, in general, as follows: 

Jm+n+an_lJm+n_l +. . .  +alJm+ 1 + a o J m : O .  (5) 

A solution for this difference equation is of the form 

Ym = C pro. (6) 

On inserting this solution in the difference equation (5) 
for Jm, an n-degree equation in p, usually called the 
characteristic equation, is obtained. The general 
solution for Jm is obtained by forming a linear 
combination from all the n roots, pj ( j  = 0 to n - 1), of 
the characteristic equation. Thus, 

n - - I  

Jm = Z CjpT. (7) 
j = 0  

Each of the n series over m on the right-hand side of 
(10) is a geometric series which can be summed for IpjI 
< 1 but not for I pjI = 1. Thus roots with unit modulus 
need to be distinguished. Let the p roots, pj, j = (n - p) 
to (n - 1), have unit modulus. Separating the series in 
(10) into two parts according as Ipjl < 1 and Ipjl -- Zj 
= 1, we have 

n- -p-  1 oo 

i(h3 ) = ~2 y Y Cj p)m, exp (2zcimh3/n) 
j = O  m=--oo 

n- -1  

+ g t2 Z ~ Cjexp (--2zrilmIXj/n) 
J=n--p m=--oo 

× exp (2rcimh3/n), H -  K4= 0 (mod 3). (11) 

We consider the two terms on the right-hand side of 
(11) separately by introducing 

n--p-- 1 oo 

id(h3) = 1if2 Z Z 
j=O m=-oo 

Cj p) mL exp (2zdmh3/n), 

Ipyf < 1, (12) 

n - - I  oo 

is(h3) = q/2 • Y Cjexp (2him~n) (h 3 - Xj), 
j=n--p rn=--oo 

Ipjl = 1. (13) 

Summing the series over m in (12) separately for m = 1 
to oo and m --- - 1  to -oo ,  we have 

Ia(h3) = gt2 ~ J + + E* ' 
J=0 E - - p y  --P7 

rpjC < 1, (14) 

where 

E = exp (-2nih3/n). (15) 

The proportionality factors (Cj, j = 0 to n - 1) can be 
evaluated by first directly determining Jm (m = 0 to n - 
1), which specify the initial conditions, and subsequen- 
tly solving n simultaneous equations of the type of (7) 
since the roots, pj, of the characteristic equation are 
known. Both pj and Cj are generally complex and can 
be expressed in terms of real quantities Zj (real as well 
as positive), X 1, Aj and Bj a s  follows: 

pj= Zj exp (--2niXj/n), (8) 

C j  = A j  + i B j .  (9) 

The diffracted intensity can then be obtained by 
substituting from (3) and (7)into (1). 

n - - I  oo 

t(h3) = v/' Z Y 
J=O m=--oo 

Cj p~m, exp (2zrimh3/n), 

H -  K 4= 0 (mod 3). (10) 

On simplification, we obtain 
n--p-- I 

Ia(h 3) = 1/t 2 ~] [Aj(1 - Z } ) -  2Bj Zj 
J = 0  

x sin (2zc/n) (h 3 - Xj)]/[ 1 + Z~ - 2Zj 

x cos(21r/n)(h3-Xj)],  Ipjl < 1. (16) 

Thus, each of the (n - p )  roots with modulus less than 
unity gives rise to a diffuse peak at h 3 = Xj, j = 0 to 
( n - - p - -  1). 

As already mentioned, the series over m in (13) 
cannot be summed. Usually for I pjl = 1, Bj = 0 and Xj 
is an integer and (13) reduces to 

n - -1  oo 

Is(h3) = g t2 Z Y. Ajcos  (2zcm/n)(h 3 - Xj), 
j=n--p m=--oo 

Ipjl = 1. (17) 

Thus each of the p roots with unit modulus gives rise 
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to an infinitely sharp peak at h 3 = Xy, j = (n - p) to 
( n -  1). 

The integrated intensity for each of the n reflexions 
corresponding to the n roots of p can be obtained by 
separately integrating each term in (16) and (17) over 
h 3 from - n / 2  to +n/2  and can be shown to be equal to 
A s apart from a constant. 

The solution for the Cj can be effected by applying 
Cramer's rule to equations of the type of (7) and we 
shall be concerned in the next section of this paper with 
a simplification in their evaluation so that each Cj can 
be expressed in terms of a single root, namely the 
corresponding root pj, the coefficients of the charac- 
teristic equation and the initial conditions. 

By carrying out the summation in (14), and replacing 
the elementary symmetric functions of pj by a s and the 
expressions involving Cj by Jm, Gevers (1954; see also 
Holloway, 1969a) has obtained an expression for the 
diffracted intensity that involves only aj and Jm and 
thus does not necessitate a solution of the charac- 
teristic equation nor of the simultaneous equations for 
Cj. Obviously, this solution is not valid when one or 
more roots, i.e. pj, have a modulus equal to unity. 
Examples of such a situation are provided by the triple 
fault in f.c.c, structures (Sato, 1966) and the extrinsic or 
layer displacement fault in h.c.p, structures (Lele, 
Anantharaman & Johnson, 1967; Pandey, Lele & 
Krishna, 1980). 

We shall also consider, with applications, in the last 
section of this paper, the special utility of the present 
method of evaluating Cj in obtaining the diffracted 
intensity when one or more of the pj have unit modulus. 

Integrated intensities 

Substituting from (6) into (5) and simplifying, we get a 
characteristic equation of the following general form 

F ( p ) - - p n  + a/1_lpn-l  + . . .  + a l p +  a o = O .  (18) 

In terms of its roots, this can be expressed as 

F(p)  = ( p -  Po) ( P -  Pl) . . .  ( P -  Pn-2) ( P -  P/1-1) = O. 

(19) 

The coefficients, a s, and the roots, PJ, J = 0 to (n - 1) 
are functions of the fault probability and are related 
through standard expressions. 

From (7), we have 

CoP~ - I  + ClP~ -1 + . "  + Cn-2Pn-2n--1 + C/1_ 1 pnn-_~=j n-x 

n - 2  n - 2  = J n  2 C o P ~ - 2  + C l P ~ - 2  + . . .  + C / 1 _ 2 p / 1 _ 2 +  C n _ l P n _ l  _ 

CoPo + CIPl  + . . .  + C/1_2Pn_ 2 + C n _ l P n _ l = J l  
Co + C1 + . . .  + C/1_ 2 + C/1_1 = So. (20) 

Using Cramer's rule, we have from (20) 

C j =  N / D ,  j = 0 t o  (n -- 1), (21) 

where Nj and D represent the following determinants: 

p~0 - 1  

p•o - 2 

NS= : 

Po 

1 

p,~-i . . .  ~ - ~  J/1-1 P.i+1/1-1 ... Pn/1-1- 2 
p~-2 ~-2 P~-, "In 2 /1-2 /1-2 

• • • - -  P / 1 - -  2 P.~+l • ' "  
• . : : : 

Pl "" PS-1 J1 

1 . . .  1 3"o 

pg-2 

D =  : 

Po 

1 

p,~- I n-1 
"'" P/1-2 

p~- 2 /1-2 
• " Pn-2 

. 

Pl .. • Pn-2 

1 . . .  1 

s+l  . . •  P n - 2  

1 . . .  1 

j =  1 t o ( n - - I ) ;  

: . 

P n -  1 

1 

n--1 
P n - l :  

/1--2: 
Pn-l! 

P n -  1 

1 

(22) 

(23) 

We shall consider a further simplification for the 
specific case of C O . The determinant N O vanishes when 
pj = Pk(k ) j =/= 0), since it then has two columns 
identical. Hence, by the remainder theorem, it has 
factors (pj - Pk) where k > j 4: O. We may thus write 

No= ( P , - P 2 ) ( P , -  P3). . .  (P /1-3-  P/1-x) 

X (Pn-2 -- Pn-1) Mo = Po Mo, (24) 

say, where M o has to be determined• By a similar 
argument, D has factors (pj - Pk) with k > j =/= 0 as also 
factors (P0 - Pk) with k =/= 0. Hence, 

D = Po(Po-- Pl)(Po-- P2). . .  (Po-- P/1-2)(Po-- P/1-1) D' ,  

(25) 

where D' has to be evaluated. To do this, we observe 
that D is a homogeneous polynomial of degree n(n - 
1)/2 in pj and thus D'  must be independent of them and 
so is a numerical constant which can be shown to be 
unity• Thus 

D = Po(Po -- Pl)(Po -- P2) . . .  (Po -- P/1-2)(Po -- P/1-1) 

= Po Eo, (26) 

say. The (n -- 1)(n - 2)/2 factors representing P0 are 
common to N O and D and will cancel on substitution in 
(21). Therefore, only the last (n -- 1) factors need 
further consideration. Let us introduce the coefficients 
bj, j = 0 to (n - 2) through 

F(p ) / (p  - Po) = (P - P l ) ( P -  P2) . . .  ( P -  Pn-2) 

x ( p - P n - l )  = p ~ - I  + bn_2p/1-2 

+ . . .  + b lp  + b o. (27) 

From (26) and (27), we have 

Eo = D/Po =p'd -1 + bn_2P~3 -2 + . . .  + b l p  o + b o. (28) 

Considering the expansion of D in terms of the elements 
of the first column of D and their cofactors (equation 
23), it is obvious that the by are just the cofactors except 
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for the common factor P0. A similar expansion of N o 
(equation 22) thus gives 

M o =  N o / P o = J n _ I  + bn_2Jn_ 2 + . . .  + b l J  1 + boJ  o. 
(29) 

Substituting in (21) from (28) and (29), we have 

Co = [Jn-1 + bn-2Jn-2  + . . .  + blJ1 + b0J0] 

× [p,d-1 + bn_2P~-2 + . . .  + blPo + b01-1. (30) 

An alternative expression for Co in terms of a I rather 
than by can be obtained by multiplying (27) by (p - P0) 
on both sides, substituting for F(p)  from (18) and 
equating the coefficients of p / ( j  = 1 to n - 1) on both 
sides. Thus, 

b j_ 1 -  bjpo = aj, j = 1 to (n -- 1). (31) 

The solution of this difference equation is 

bj=p'd - j - 1  + a ,_ lp '~-J-2  + . . .  + aj+2p o + aj+ 1. (32) 

Substituting from the above into (30), we obtain, after 
rearranging in decreasing powers of p0, 

C o =  [JoP'd -1 + (Joa , , - ,  + J1) pg-2 + . . .  

+ (Joa2 + J la3  + . . .  + J n - 3 a n - I  + Jn-1) Po 

+ (Joal + J l a z  + . . .  + J n - 2 a n - 1  + Jn- , ) ]  

× [np'd -1 + ( n -  1)an_lpg - z  

+ ... + 2azPo + al] -1. (33) 

Since the analytical solutions (equations 30 and 33) 
for Co involve only the corresponding root of the 
characteristic equation, namely P0, apart from the 
coefficients (aj or bj) and the initial conditions, it 
follows that knowledge of the value of a single root, pj, 
is sufficient for the evaluation of the respective Cj. On 
the other hand, a direct evaluation of Cj from (21) 
requires a knowledge of all the roots rather than the 
coefficients of the characteristic equation. Since ex- 
pressions for the coefficients are generally much simpler 
than those for the roots (in fact for equations of degree 
higher than four, it may not be possible at all to have 
analytical expressions for the roots), the convenience in 
obtaining the integrated intensity from (33) is obvious. 

Applications for cases with solutions having unit 
modulus 

The diffracted intensity from diffuse reflexions can be 
obtained by summing the series on the right-hand side 
of (14) following the procedure of Gevers (1954) and 
Holloway (1969a). Consequently, elementary sym- 
metric functions of only those roots with I pjl < 1 will 
appear in this expression. These can be obtained by 

dividing (18) by p factors (p - pj), I pjl = 1, j = (n - p) 
to (n - 1), giving 

G(p)=_p "-p + dn_p_ap "-p-1  + . . .  + d i p +  d0=  0. (34) 

The roots of this equation are identical to those 
involved in the summation mentioned above and 
hence the elementary symmetric functions of these roots 
are equal to the dj, apart from their signs. Thus aj 
should be replaced by dj in the analytic solution for the 
diffracted intensity obtained by Gevers and Holloway. 
In a similar fashion, the Jm (equation 7), which 
correspond to a sum over all roots, should be replaced 
by K m which have a sum over the roots with Ipjl < 1 
only. Thus, 

n--p-- 1 
Kin= Y cj~. (35) 

J=0 

Utilizing (7), we can rewrite (35) as 

n--1 
K m = J  m -  Y Cjp  7. (36) 

J=n-p 

We have thus obtained a self-consistent set consisting 
of the characteristic equation (34) and the initial 
conditions (equation 36) which no longer have the 
effects of any roots with unit modulus and thus can be 
used as input for the calculation of the diffracted 
intensity by the method of Gevers (1954). As already 
mentioned, the diffracted intensity corresponding to the 
roots with unit modulus consists of sharp peaks and has 
to be superposed on the diffuse intensity corresponding 
to the roots with non-unit modulus. 

As an illustration of this procedure, we shall consider 
the case of extrinsic faulting in h.c.p, crystals. Follow- 
ing Holloway (1969b), the characteristic equation is 

p a _  (1 - a ) 2 p  2 -  2a(1 - a ) p - a 2 =  0, (37) 

which has one root, say P3 with unit modulus (Z 3 = 1; 
X 3 = 0), while the initial conditions are 

J0 = 1, J2 = (2 -- 7a + 6a2)/2(1 +a ), 
(38) 

Jl  = - 1 / 2 ,  J3 = (--1 + 5 a -  3a 2 -  3a3)/2(1 +a) .  

Dividing (37) by (p - P3) - (P - 1), we have 

p3 q_ p2 q_ ( 2 a - a 2 ) p  + a 2 = 0. (39) 

Thus, 

b 2 = 1, b I = 2 a - a  2, b 0 = a  2. (40) 

Utilizing (38) and (40), we obtain from (30) 

• 13 + J2b2 + Jib1 + Jobo 

C 3 = p] + b2P 2 + b lp  3 + b o 

= (1 -- 2a)2/4(1 + a) 2. (41) 
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From (36), (38) and (41), we get 

K 0 =  3(1 + 4a)/4(1 + a )  2, 

K 1 = - - 3 ( 1  + 2a2)/4(1 + a )  2, 

K 2 =  3(1 -- 2a)(1 -- 2a2)/4(1 +tx) 2. (42) 

Following Gevers (1954) and Holloway (1969a), the 
diffracted intensity for the diffuse reflexions is given by 

Ia(h3) = K o + Aj cos (Trjh 3 Bj cos (7rjh 3 , 
J=0 = 

(43) 
where 

. 4 o =  

, 4 1 =  

, 4 2 =  

, 4 3 =  

B 0 = 

n l =  

n 2 = 

b2 KI + b l ( K  2 + b 2 K1) -- b 2 K0, 

(1 + bl)K 1 + (b 2 + b o ) ( g  2 + b 2 K l ) -  blboKo, 

b0 KI + K 2 + b 2 K1 -- b 2 b0 K0, 

--boK o, 
1 + b2 2 + bl 2 + b 2, (44) 

2(b2 + b2 bl + bl bo), 

2(bl + b2 bo), 

B a = 2b o. 
Substituting from (40), (42) and (44) in (43), we have 
after simplification 

Ia(h 3 ) = { 3 a ( 1 - a ) [ 2 - 3 a + 2 a  2+ (1 + a - 2 a  2) 

x cos zch 3 + 2acos  2 7rh3]}/{2(1 + a) 

× [1 + a 2 -4- 2a cos 7oh 3 ] 

x [ ( 1 - - a )  2 + ( 1 - - a  2) 

× COS 7ch 3 + 2a COS 2 7th 3 ] }, (45) 

which is identical with the expression obtained by Lele, 
Anantharaman & Johnson (1967) and Holloway 

(1969b). It may be noted that except for the root with 
unit modulus and the corresponding integrated inten- 
sity, which could be obtained very simply, no other root 
or integrated-intensity values were necessary for the 
calculations. 
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for helpful discussions. 

References 

ANANTHARAMAN, T. R., RAMA RAO, P. & LELE, S. (1972). 
Recent Developments in Metallurgical Science and 
Technology, pp. 407--484. New Delhi: Indian Institute of 
Metals. 

COHEN, J. B. & HILLIARD, J. E. (1966). Local Atomic 
Arrangements Studied by X-ray Diffraction. New York: 
Gordon and Breach. 

GEVERS, R. (1954). Acta Cryst. 7, 337-343. 
HENDRICKS, S. • TELLER, E. (1942). J. Chem. Phys. 10, 

147-167. 
HOLLOWAY, H. (1969a). J. Appl. Phys. 40, 4313-4321. 
HOLLOWAY, H. (1969b). Phys. Status Solidi, 35, 507-513. 
LELE, S. (1974). Acta Cryst. A30, 509-513. 
LELE, S., ANANTHARAMAN, T. R. & JOHNSON, C. A. (1967). 

Phys. Status Solidi, 20, 59-68. 
PANDEY, D., LELE, S. d~ KRISHNA, P. (1980). Proc. R. Soc. 

London Ser A, 369, 435-449. 
SATO, R. (1966). Acta Cryst. 20, 150-151. 
WARREN, I .  E. (1959). Prog. Met. Phys. 8, 147-202. 
WARREN, I .  E. (1969). X-ray Diffraction. Reading, Mas- 

sachusetts: Addison-Wesley. 
WILSON, A. J. C. (1942). Proc. R. Soc. London Ser. A, 180, 

277-285. 
WILSON, A. J. C. (1962). X-ray Optics. London: Methuen. 

Acta Cryst. (1980). A36, 588-591 

The Fragile Lattice Packings of Spheres in Four-Dimensional Space 

BY K. L. FIELDS AND M. J. NICOLICH 

Department of  Mathematics, Rider College, Lawrenceville, New Jersey 08648, USA 

(Received 23 October 1979; accepted 22 January 1980) 

Abstract 

In a fragile packing of spheres, t h e  density of the 
packed spheres is minimized. There are exactly nine 
distinct indecomposable fragile lattice packings in 
four-dimensional space; they are described in terms of 
their associated quadratic forms. 

The three-dimensional fragile lattice packings of 
spheres were determined by Fields (1980). There are 
only the simple cubic, simple hexagonal, body-centered 
cubic and body-centered tetragonal packings. Of  these 
lattices, only the latter two are indecomposable" the 
simple cubic is the orthogonal sum of three one- 
dimensional lattices, and the simple hexagonal lattice is 
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